[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing Databases

AWT IMAGE

    www.isc.gov.ir 

..
:: Volume 7, Issue 1 (4-2019) ::
JAIR 2019, 7(1): 61-84 Back to browse issues page
Determining the appropriate level of protein in diet of Cyprinus carpio fry based on some parameters of growth, blood and serum biochemistry in biofloc system
Mahsa Mahmoudi Khoshdarehgi * , Abdolmajid Haji Moradloo , Behrouz Dastar
Abstract:   (4029 Views)

The present study was conducted to determine the appropriate level of protein in diet of Cyprinus carpio fry based on biofloc technology. The experiment was designed based on triplicate of four bioflocs treatments (BFT) and one control treatment (CW). 450 specimens of C. carpio fry with mean weight of 17±0.08 g were stocked in 15 fiberglass tanks. Fish were fed in biofloc treatments with diets containing 23% crude protein (CP) (BFT-23%), 27% CP (BFT-27%), 31% CP (BFT-31%) and 35% CP (BFT-35%). Sugar beet molasses was added as a carbon material to development the biofloc. Fry were fed with 35% CP (CW-35%) in non-biofloc control treatment. According to obtained results, weight gain, specific growth rate, daily growth and protein efficiency rate were significantly higher in BFT-31% and BFT-27% than other treatments (P<0.05). Protein level of diet had significant effect on some parameters of blood and serum biochemistry (red blood cells, white blood cells, hematocrit, hemoglobin, total protein and albumin) in bifloc treatments and their rates in BFT-31% and BFT-35% treatments were significantly higher than other treatments (P<0.05). Results of this research indicated that diet protein level can decrease from 35% to 27% without any effect on survival, growth, feed conversion ratio and some parameters of blood and serum chemistry when Cyprinus carpio fry culture in biofloc system, and shows that biofloc system can help to protein feeding and physiological health of Cyprinus carpio.

Keywords: Cyprinus carpio, Biofloc system, Growth performance, Diet protein, Blood parameters
Full-Text [PDF 593 kb]   (2321 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2017/05/3 | Accepted: 2017/06/16 | Published: 2019/04/25
References
1. Abdel-Tawwab M., Ahmad M.H. 2009. Effect of dietary protein regime during the growing period on growth performance, feed utilization and whole-body chemical composition of Nile Tilapia, Oreochromis niloticus (L.). Aquaculture Research, 40: 1532-1537.
2. Abdel-Tawwab M., Ahmad M.H., Khattab Y.A.E., Shalaby, A.M.E. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture Research, 298: 267-274.
3. Adel M., Pourgholam R., Zorriehzahra S.J., Ghiasi M. 2015. The effect of different level of Mentha piperita on some of the hematological, biochemical and immune parameters of Oncorhynchus mykiss. Iranian Scientific Fisheries Journal, 24 (1): 37-47. (In Persian).
4. Adhikari S., Sarkar B., Chatterjee A., Mahapatra C.T., Ayyappan S. 2004. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety, 58: 220-226.
5. AOAC. 2005. Official Methods of Analysis (18th edition). Association of Official Analytical Chemists, Gaithersburg, Maryland, USA. 96 P.
6. Avnimelech Y. 2006. Bio-filters: the need for a new comprehensive approach. Aquacultural Engineering, 34 (3):172-178.
7. Avnimelech Y. 2012. Biofloc Technology-A Practical Guide Book, 2nd edition. The World Aquaculture Society, Baton Rouge, Louisiana, EUA. 272 P.
8. Avnimelech Y., Verdegem M.C.J., Kurup M., Keshavanath P. 2008. Sustainable land based aquaculture: rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal, 1: 45-55.
9. Azim M.E., Little D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29-35.
10. Azim M.E., Little D.C., Bron J.E. 2007. Microbial protein production in activated suspension tanks manipulating C/N ratio in feed and implications for fish culture. Bioresource Technology, 99: 3590-3599.
11. Azimi A., Jafaryan H., Harsij M., Gholipour H., Patimar R. 2017. Effect of C/N different ratios on water quality parameters and growth performance of common carp (Cyprinus carpio) fingerlings in biofloc system. Journal of Aquaculture Development, 10(4): 75-89. (In Persian).
12. Bakhshi F., Malekzadeh Viayeh R., Najdegerami E.H. 2014. The application of biofloc technology in intensive culture of Common carp (Cyprinus carpio) fingerlings. Journal of Animal Environment, 6 (3): 45-53. (In Persian).
13. Ballester E.L.C., Abreu P.C., Cavalli R.O., Emerenciano M., Abreu L., Wasielesky W. 2010. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16(2): 163- 172.
14. Banaee M., Mirvagefei A.R., Rafieei G.R., Majazi Amiri B. 2008. Effect of sublethal diazinon concentrations on blood plasma biochemistry. International Journal of Environmental Research, 2: 189-198.
15. Barrows T.F., Gaylord G.T., Stone A.J.D., Smith E.C. 2007. Effect of protein source and nutrient density on growth efficiency, histology and plasma amino acid concentration of rainbow trout (Onchorhynchus mykiss Walbaum), Aquaculture Research, 38: 1747-1158.
16. Blaxhall P.C., Daisley K.W. 1973. Routine haematological methods for use with fish blood. Journal of Fish Biology, 5: 771-781.
17. Cheng A., Chen C., Liou C., Chang C. 2006. Effects of dietary protein and lipids on blood parameters and superoxide anion production in the grouper, Epinephelus coioides (Serranidae: Epinephelinae). Zoological Studies, 45 (4): 492-502.
18. Correia E.S., Wilkenfeld J.S., Morris T.C., Wei L., Prangnell D.I., Samocha T.M. 2014. Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59: 48-54.
19. Cowey C.B. 1979. Protein and amino acid requirements of finfish. In: Halver J.E., Tiews K., Bundes S. (Eds.). Finfish nutrition and fishfeed technology. Hamburg, Germany, pp: 3-16.
20. Crab R., Chielens B., Wille M., Bossier P., Verstraete W. 2012b. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacultural Engineering, 41: 559-567.
21. Crab R., Defoirdt T., Bossier P., Verstraete W. 2012a. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356-357: 351-356.
22. Crab R., Kochva M., Verstraete W., Avnimelech Y. 2009. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3):105- 112.
23. De Almeida Bicudo A.J., Sado R.Y., Cyrino J.E.P. 2009. Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquaculture Research, 40: 486-495.
24. De Schryver P., Crab R., Defoirdt T., Boon N., Verstraete W. 2008. The basics of biofocs technology: the added value for aquaculture. Aquaculture, 277(3-4): 125-137.
25. Dixon B., Stet R.J. 2001. The relationship between major histocom- patibility receptors and innate immunity in teleost fish. Development & Comparative Immunology, 25(8-9): 683-699.
26. Doumas B.T., Watson W., Biggs H.G. 1997. Albumin standards and measurement of serum albumin with bromocresol green. Clinica Chemica Acta, 258(1):21-30.
27. Drobkin D.R. 1945. Crystallographic and optical properties of human hemoglobin: a proposal for the standardization of hemoglobin. The American Journal of the Medical Sciences, 209: 268-70.
28. FAO. 2013. Fishstate plus: Universal software for fishery statistical time series (available at: www.fao.org/ fi/ statist/ fisoft/ fishplus.asp)
29. FAO. 2015. Global Aquaculture Production 1950-2013. http://www.fao.org /fishery /statistics /global-aquaculture-production/query /en
30. Hargreaves J.A. 2013. Biofloc production systems for aquaculture. SRAC Publication No. 4503: 1-12.
31. Harikrishnan R., Kim M.C., Kim J.S., Balasundaramb C., Heo M.S. 2011. Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Oplegnathus fasciatus (Temminck & Schlegel) against Edwardsiella tarda. Fish & Shellfish Immunology, 30(3): 886-893.
32. Hepher B. 1988. Nutrition of Pond Fishes. Cambridge Publication, Great Britain. 388 P.
33. Houston A.H. 1990. Blood and circulation. In: Schreck CB, Moyle PB (Eds.). Methods in fish biology. Bethesda, Meryland: American Fisheries Society. pp: 273-335.
34. Iwama G., Nakanishi T. 1996. The Fish Immune Dystem: Organism, Pathogen and Environment. Academic Press, New York, USA. 380 P.
35. Jauncey K. 1982. The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapia (Sarotherodon mossambicus). Aquaculture, 27: 43-54.
36. Ju Z.Y., Forster I., Conquest L., Dominy W. 2008a. Enhanced growth effects on shrimp, Litopenaeus vannamei from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition, 14(6): 533-543.
37. Ju Z.Y., Forster I., Conquest L., Dominy W., Kuo W.C., Horgen F.D. 2008b. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39: 118-133.
38. Kim J.D., Kim K.S., Song J.S., Lee J.Y., Jeong K.S. 1998. Optimum level of dietary monocalcium phosphate based on growth and phosphorus excretion of mirror carp, (Cyprinus carpio). Aquaculture, 161: 337-344.
39. Kumar S., Sahu N.P., Pal A.K., Choudhury D., Yengkokpam S., Mukherjee S.C. 2005. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish & Shellfish Immunology, 19(4): 331-344.
40. Lee S., Kim K. 2005. Effect of various levels of lipid exchanged with dextrin at different protein level in diet growth and body composition of juvenile flounder Paralichthys olivaceus. Aquaculture Nutrition, 11(6): 435-442.
41. Liu Y., Feng L., Jiang J., Liu Y., Zhou X. 2009. Effects of dietary protein levels on the growth performance, digestive capacity and amino acid metabolism of juvenile Jian carp (Cyprinus carpio. Var. jian). Aquaculture, 40: 1073-1082.
42. Lone K.P., Ince B.W., Matty A.J. 1982. Changes in the blood chemistry of rainbow trout, Salmo gairdneri fish, in relation to dietary protein level, and an anabolic steroid hormone, ethylestrenol. Journal of Fish Biology, 20(5): 597-606.
43. Long L., Yang J., Yuan L., Guan C., Wu F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135-141.
44. Luo G., Wang C., Liu W., Sun D., Li L., Tan H. 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-423: 1-7.
45. McGoogan B.B., Gatlin D.M. 1999. Dietary manipulations affecting growth and nitrogenous waste production of red drum, Sciaenops ocellatus: I. Effects of dietary protein and energy levels. Aquaculture, 178: 333-348.
46. Metwally M.A.A. 2009. Effects of Garlic (Allium sativum) on Some Antioxidant Activities in Tilapia Nilotica (Oreochromis niloticus). World Journal of Fish and Marine Sciences, 1(1): 56-64.
47. Megahed M.E. 2010. The effect of Microbial Biofloc on water quality, survival and growth of the green tiger shrimp (Penaeus semisulcatus) fed with different crude protein levels. Journal of the Arabian Aquaculture Society, 5: 119-142.
48. Melo J.F.B., Lundstedt L.M., Metón I., Baanante I.V., Moraes G. 2006. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comparative Biochemistry and Physiology, 145(2): 181-187.
49. Misra C.K., Das B.K., Mukherjee S.C., Meher P.K. 2006. The immunomodulatory effects of tuftsin on the non-specific immune system of Indian Major carp, Labeo rohita. Fish & Shellfish Immunology, 20(5): 728-738.
50. Najdegerami E., Bakhshi F., Bagherzadeh Lakani F. 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2): 457-465.
51. Narain A.S., Srivastava P.N. 1989. Anemia in the freshwater teleost, Heteropneustes fossilis, under the stress of environmental pollution. Bulletin of Environmental Contamination and Toxicology, 43: 627-634.
52. Piedrahita R.H. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture, 226: 35-44.
53. Pulsford A.L., Lemaire-Gony S., Tomlinson M., Collingwood N., Glynn P.J. 1994. Effects of acute stress on the immune system of the dab, Limanda limanda. Comparative Biochemistry and Physiology, 109(2): 129-139.
54. Rahman M.M., Normawaty M.N., Shahbudin S., Kamaruzzaman Y. 2016. Coastal water quality of Tioman Island: effects of human activity and the distance from shoreline. Desalination Water Treatment, 57(1): 83-87.
55. Rezaei M.H., Sorinezhad A., Soltanian S., Yousefzadi M. 2012. Study on some growth parameters and hematology of hypophthalmus Pangasianodon by adding the Salvia macrosiphon extract to diet. Journal Aquatic Ecology, 2(2): 28-43. (In Persian).
56. Sakthivel M. 1988. Effects of varying dietary protein level on the blood parameters of Cyprinus carpio. Proceedings of the Indian National Academy of Sciences: Animal Sciences, 97: 363-366.
57. Shoemaker C.A., Klesius P.H., Lim C., Yildirim M. 2003. Feed deprivation of channel catfish, Ictalurus punctatus (Rafinesque), influences organosomatic indices, chemical composition and susceptibility to Flavobacterium columnare. Journal of Fish Diseases, 26(9): 553-561.
58. Stirling H.P. 1985. Chemical and biological methods of water analysis for Aquaculturists. Institute of Aquaculture, University of Stirling, Stirling, Scotland. 119 P.
59. Suárez M.D., Hidalgo M.C., García Gallego M., Sanz A., Higuera M. 1995. Influence of relative proportions of energy yielding nutrients on liver intermediary metabolism of the European eel. Comparative Biochemistry and Physiology, 111(3): 421-428
60. Vergara J.M., Fernandez-Palacios H., Robaina L., Jauncey K., De La Higuera M., Izquierdo M. 1996. The effects of varying dietary protein level on the growth, fee efficiency, protein utilization and body composition of gilthead sea bream. Fisheries Science, 62: 620-623.
61. Wasielesky J.W., Atwood H., Stokes A., Browdy C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258: 396-403.
62. Watanabe T. 1988. Nutrition and Growth. In: Sheaherd C.J., Bromage N.R. (Eds.). Intensive Fish farming, BSP Professional Books. Oxford Publication, pp: 154-197.
63. Webster A.H., Lim C.E. 2002. Introduction to Fish Nutrition. In: Webster CD, Lim CE, (Eds.). Nutrition Requirements and Feeding of Finfish for Aquaculture. CABI Publishing, pp: 1-27.
64. Wiegertjes G.F., Stet R.J.M., Parmentier H.K., Van Muiswinkel W.B. 1996. Immunogenetics of disease resistance in fish; a comparable approach. Development Comparative Immunology, 20: 365-371.
65. Xu W.J., Pan L.Q. 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147-152.
66. Xu W.J., Pan L.Q. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412: 117-124.
67. Xu W.J., Pan L.Q. 2014. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture, 426: 181-188
68. Xu W.J., Pan L.Q., Zhao D.H. 2012. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350- 353: 147-153.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudi Khoshdarehgi M, Haji Moradloo A, Dastar B. Determining the appropriate level of protein in diet of Cyprinus carpio fry based on some parameters of growth, blood and serum biochemistry in biofloc system. JAIR 2019; 7 (1) :61-84
URL: http://jair.gonbad.ac.ir/article-1-482-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (4-2019) Back to browse issues page
نشریه علمی پژوهشی پژوهشهای ماهی شناسی کاربردی Journal of Applied Ichthyological Research
Persian site map - English site map - Created in 0.07 seconds with 39 queries by YEKTAWEB 4660